Klimatbloggen

november 13, 2007

Var den lilla istiden homogent kall?

Här om veckan skrev jag om mina senaste fynd, om hur Östersjöns klimat varierat mer än vi tidigare trott. Att klimatet varier mycket i vår region är högst intressant, och en väckt fråga blir naturligt hur man kan karakterisera klimatet i området över de senaste 500 åren. I senaste Journal of Climate publiceras en ny artikel, skriven av mina kollegor, som gör just detta. Vad gäller lilla istiden var det förmodligen vinterhalvåret som den största variationen skedde, och det är vad som fokuseras på.

Vår region är välsignad med en lång tradition av mätningar, varför vi har några av världens längsta dataserier med absolut högstklassig kvalité. Flertalet av dessa serier har använts i artikeln för att klassificera förändringar sedan 1500-talet. Vi har kunskap om hur svåra vintrarna varit ända tillbaka till 1300-talet, även om det är ganska framgenterat i den tidiga delen (och ännu tidigare). Tidsserier över isuppbrytningen runt om i floder och hamnar i Östersjöregionen började antecknats mellan mitten av 1500-talet till början av 1700-talet. Isutbredningen i Östersjön finns att uppskattad så långt tillbaka som 1720. De första temperaturserierna påbörjades runt mitten av 1700-talet och sträcker sig fram till våra dagar med dagliga värden. Det finns också rekonstruktioner av lufttryck och temperatur för området tillbaka till år 1500. Alla dessa data tog författarna och bearbetade. Genom att använda sig av Matching Pursuit-metoden (MP) kan man plocka ut händelser i en tidsserie som är viktiga och förklarar variationen i serien. Ju fler gånger man använder sig av MP på en serie, ju fler händelser plockas ut. Vi kan ta Uppsalas lufttemperatur som exempel. Första gången MP används på serien plockas den varma perioden mellan 1722-1744 ut som en viktig händelse, och kan förklara 8% av seriens varians. I nästa steg plockas de kalla krigsvintrarna under 1940-talet ut. Nu förklaras 13% av variansen. I de tre kommande stegen plockas perioderna 1966-1975, 1982-1993 och 1788-1791 ut (de är perioder med kalla följt på av milda vintrar). Med hjälp av dessa steg kan man nu förklara över en fjärdedel av variansen. Så håller det på, och när man kört MP tio gånger kan man förklara 40,1% av variansen. Detta gjordes alltså på alla serier, och ger en bild över vilka perioder som var milda eller kalla.

Då alla serier genomgått MP-metoden jämförs de utplockade perioderna i serierna med varandra. Jämförs endast de längsta perioderna, som MP-metoden plockade ut, ser man att flera serier har gemensamma drag. I sydvästra och centrala Östersjöregionen dominerar en mild period under första hälften av 1700-talet, följt av en kall period, som sträcker sig till slutet av 1800-talet, för att återigen domineras av en varm period under 1900-talet. I östra och norra Östersjöregionen verkar dock första hälften av 1700-talet inte vara lika uttalat varm. Där är det istället 1900-talet som sticker ut som en värmeperiod. Skalar man ner tidsperspektivet till kortare tidsskalor däremot förefaller det som om alla serier reagerar nästa simultant på de korta förändringarna. En typisk sådan period är 1930-talets milda vintrar i hela regionen, eller 1940-talets kalla krigsvintrar. Fler korta värme- och köldperioder kan också identifieras.

En annan metod, som komplementerar MP, är waveletanalys. Genom att filtrera serierna så att endast variationer över en viss tidslängd syns fås en förståelse för hur klimatet varierar under olika perioder. Den viktiga punkten är att en mild period har betydligt mindre variabilitet än en kall period. Det betyder att en mild period (som vi har idag) rent klimatmässigt är en mer stabil period. En fråga som seglar upp med detta är oundvikligt funderingen kring vad ett normaltillstånd för klimatet egentligen är – milt eller kallt?

Från de ovanstående metoderna kan 15 perioder sedan 1500-talet – alla med olika karaktär – identifieras. Det gäller kalla perioder mellan åren 1562-1576, 1597-1629, 1663-1706, 1750-1877 (och än ytterligare sträng period 1803-1820), 1940-1942 samt 1985-1987. Varma perioder inträffade dock åren 1522-1536, 1577-1591, 1630-1662, 1707-1750, 1877-2000  (med ytterligare intensivt milda perioder åren 1930-1940, 1971-1975 samt 1988-1993).

Som synes av det ovanstående är det ett naturligt drag för Östersjöregionens klimat att variera stort på en tioårsskala. Det är lätt att förstå då temperaturen över de senaste 500 åren varierat mellan -10 till 0 grader enligt rekonstruktioner. Att klimatet på 1700-talet och 1900-talet har mer gemensamt än vad det har med det mellanliggande 1800-talet är alltså inga konstigheter. Det ger också fog för diskussion till hur lämpligt det är att endast jämföra en 30-årsperiod som normal (typiskt 1961-1990), även om det rent logiskt går att argumentera att en sådan behövs av rent referensmässiga skäl (dock utan att den i sig säger något överdrivet mycket om onormalitet i klimatet då vi vet att variabiliteten är mycket stor).

Avslutningsvis öppnar författarna upp för en diskussion till hur stor den antropogena delen av uppvärmningen sedan 1870-talet som kan bero på mänsklig aktivitet. I normalfall brukar man ju säga att sådana effekter först kan urskiljas efter 1950, alltså en stund senare efter vi nådde en likvärdig värmeperiod som under 1990-talet (jmf 1930-talet, se även mitt andra inlägg). Det går naturligtvis inte att säga utifrån de data som presenteras, men de föreslår att vi i framtiden kan förvänta oss en värmande trend, men att det är svårt att avgöra hur stor den blir då vi nu vet att klimatet på naturlig basis (innan 1877) varierat kraftigt, mer och oftare än vi tidigare antagit. En sådan effekt skulle alltså kunna vara avgörande.

(svaret på rubriken är självfallet ‘nej’ enligt ovan nämnda faktorer)

oktober 28, 2007

Norska glaciärer i tillväxt under mild period

Vad får vi om vi kombinerar inläggen om hur konst kan hjälpa till kartlägga glaciärers dynamik samt det om som visar en varm period i Östersjöregionen under 1700-talet? Resultatet skulle inte komma allt för långt bort från en av våra norska grannar ny artikel som kommer publiceras i Climate Dynamics.

Under 1700-talets första hälft växte många av de norska glaciärerna med några hundra meter. Det är kanske inte så anmärkningsvärt eftersom vi då befinner oss mitt i den lilla istiden. Som jag pekade på i min artikel verkar det som om den lilla istiden inte alls var särskilt homogent kall, och absolut inte under första hälften av 1700-talet. Milda vintrar (och ganska normala somrar) låter inte som det bästa receptet på tillväxt i norska glaicärer, men det kanske är just det är.

Författarna till glaciärartikeln fann att tillväxten främst berodde på en ihållande period av milda vintrar och ökad nederbörd, vilket förmodligen är ett resultat av ihållande positiv fas av NAO – mycket av som det var under 1990-talet (och en del glaciärer i Skandinavien hade tillväxt då – Storglaciären är ett svenskt exempel). För att sätta det i perspektiv till mina egna resultat kan jag bara hålla med om att första hälften av 1700-talet var ovanligt mild (se figur) och att det verkar som att färskvattentillförseln till Östersjön var något högre än normalt.

Alla dessa resultat tyder på att det är av stor vikt att vidare undersöka det Skandinaviska regionala klimatet, och dess variabilitet, eftersom det så tydligt visar att det långt ifrån är förstått. Kan vi förstå variabiliteten och vilka gränser vårt klimate naturligt har kan vi också förbättra framtidsscenarierna för regionen, något alla vinner på. Klimatsystemet är långt ifrån linjärt och stora luckor finns fortfarande på många ställen. Återigen ger det anledning att önska mer grävande i arkiv och andra gamla källor för att ge en bättre bild av hur klimatet har varierat över tid i vår region. I historien ligger nyckeln till framtiden.

oktober 22, 2007

Östersjöns havsklimat varierar mer än tidigare trott

Östersjön är som bekant vårt innanhav, omfamnat av de baltiska staterna, Ryssland, Finland, Polen, Tyskland, Danmark samt Sverige. Det är inte bara klimatet som påverkar systemet. I runda slängar bor det 85 miljoner människor i innanhavets avrinningsarea, vilket självklart också sätter sina spår; förändrad landanvändning, ökad tillförsel av närsalter och överfiskning, för att bara nämna några effekter. Dessa effekter kan ibland förväxlas med klimatförändringar, även om de inte har med varandra att göra. Då denna region är ”vår” region har vi stor önskan om att förstå hur klimatet i framtiden kommer variera. Men för att underlätta den sortens studier måste vi först förstå hur klimatet har varierat över tid. Vi vet att den Lilla Istiden generellt varade från cirka 1400-talet och tog slut runt mitten av 1870-talet. Därefter har vi haft en värmande tendens lufttemperaturmässigt, och en vintertid för det mesta reducerad isutbredning. Men hur har klimatet varierat i mer detalj? När var det varmt och när var det kallt? Och framförallt, hur stor kan vi anta att den interna variationen över tid?

I en ny artikel i Climate Dynamics, författad av mig (Daniel) och Anders Omstedt vid Göteborgs Universitet, har vi försökt få fram mer information om Östersjöns vattentemperatur [vertikal- och horizontalintegrerad för att ta hänsyn till hela värmebalansen] och isutbredning över de senaste 500 åren, vilket är första gången något sådant görs. Vi använde oss av en havsklimatmodell, och drev den med meteorologiska data från multiproxyrekonstruktioner av temperatur- och tryck (mellan 1500 och 1658 användes dokument och naturliga arkiv för att härleda temperatur och tryck, medan uppmätta temperaturserier införlivades allt eftersom de påbörjades). Det häftiga med en sådan metod är att vi ur meteorologiska rekonstruktioner kan extrahera helt andra typer av data som vi tidigare inte haft tillgång till. På så sätt kan vi förlänga vår kunskap bakåt i tiden, förbi den tidpunkt då instrumentella dataserier inte existerar. Exempelvis har vi en relativt bra uppfattning om isutbredningen i Östersjön från 1720 och framåt. Vad gäller vattentemperatur finns det mätningar från början av 1900-talet, men riktigt bra heltäckande data började komma först under 1970-talet i och med övervakning och användandet av CTD. Med vår metod kunde vi förlänga denna kunskap tillbaka till år 1500, vilket självklart är en stor landvinning.

Vi kan börja konstatera att Östersjöns vattentemperatur under 1900-talet i medeltal uppgick till cirka 4,6 grader. Variationen över dekader är ganska stor och det kommer nog inte som någon överraskning att både 1930- och 1990-talet, tätt följt av 1950-talet, står ut som varma perioder under denna tid. Även om 1990-talet är det varmaste årtiondet i vattentemperatur, så är det svårt att avgöra om den är den ensamt varmaste perioden sedan 1500-talet. Under 1720- och 1730-talen inträffade också en betydande varm period, och den matchar 1990-talet i magnitud. Rent siffermässigt är 1990-talet något varmare än 1730-talet, men statistiskt sett går det inte att skilja dem åt. Uppvärmningstakten är också densamma. Under de tjugo år som 1700-talets värmeperioden varade var trenden en halv grad per årtionde. Under slutet av 1900-talet var uppvärmningstakten 0,4 grader per årtionde. Inte heller här är det statistiskt sett inte någon skillnad. Om vi istället undersöker århundraden så är det tjugonde århundradet (1900-talet) det varmaste sedan 1500-talet. Lika snabbt som 1700-talets värmeperiod uppstod, lika snabbt försvann den igen, då avkylningstakten mellan 1740 till 1759 uppgick till hela 0,4 grader per årtionde.

Innan någon rusar iväg och övertolkar det resultatet bör det i bakhuvudet hållas att mängden data bakåt i tiden minskar ju längre bakåt man går. Dessutom infaller 1700-talets värmeperiod samtidigt som Uppsalas lufttemperatur introduceras i den rekonstruerade lufttemperaturen, som bland annat används för att driva vår klimatmodell. Uppsala är den första, och längsta, temperaturserie från Östersjöregionen och påbörjades av Anders Celcius år 1722. Det man bör veta är att lufttemperaturen under den första tiden mättes i ett välventilerat rum – alltså inte i en fristående termometer utomhus. För att undkomma detta problem har Uppsalaserien genomgått homogenisering och betraktas för tillfället vara det bästa tillgängliga som går att få. Idag vet vi inte om temperaturen i Uppsala fram till 1750 är för hög eller inte – statistiska tester ger inget entydigt svar. Men, för att göra lite rättvisa kan man studera den maximala isutbredningen i Östersjön vilken, som ovan beskrevs, finns tillgänglig sedan 1720. Denna serie är inte beroende av någon lufttemperatursmätning (men är mycket starkt korellerad med Uppsalas lufttemperatur), men visar ändock på en varm period med liknande isförhållande som idag. I samtida mätserier från Västeuropa var 1720- och 1730-talen ovanligt milda, varför man kan anta att det faktiskt var en värmeperiod då. Trots det bör man vara lite försiktig då data från denna tid är starkt begränsad och något osäker.

Nog om värmeperioder, vad med köldperioder? Har det inträffat några sådana under de senaste 500 åren? Javisst! De starkaste inträffade både innan och efter 1700-talets värmeperiod; 1694-1697 och 1782-1789. Kylan var kanske kortvarig, men desto mer intensiv (jämför de kalla perioderna under 1940- och 1980-talen). Köldperioden i slutet av 1600-talet inföll samtidigt som Late Maunder Minimum, vilken är sammankopplad med ovanligt låg solaktivitet. Om just den ovannämnda köldperioden har något med solaktiviteten att göra går inte utifrån våra data att avgöra, men det har vi å andra sidan inte heller undersökt. Samtidigt var det under just denna köldperiod som det kallaste året i både vattnet och luften inträffade; 1695. Det var också det kallaste året i Europa sedan 1500-talet fram till våra dagar (det varmaste året för vattentemperaturen var 1975 medan det var 1989 för lufttemperaturen).

Det är tydligt hur en uppvärmningsperiod tar till vid den Lilla Istidens slut, 1875. En långsiktlig uppvärmande trend höll i sig fram till 1935, vilket visar att en ny mildare regim (alltså mer maritim regim, mer påverkad av Nordatlanten än de ryska högtrycken) tog vid. Därefter blev det sakta kyligare igen, fram till 1980-talet då en ny uppvärmning tog fart. Några egentliga trendanalyser över den tiden är alltså meningslöst och säger inte så mycket.

Vi har nu diskuterat vattentemperaturen ganska ingående, så vad med isen? Som de flesta vet är is och temperatur ganska tätt sammanknutet. Framförallt är isformationen i Östersjön beroende av medeltemperaturen över månaderna december, januari och februari. Milda vintrar har alltså mindre is (jag skämtar inte). Sedan 1500-talet har flertalet milda vinterperioder inträffat, och de med minst is (egentligen lägst maximal isutbredning) var 1730-, 1740-, 1930- och 1990-talen (i den ordningen). Att isutbredningen var mindre under dessa perioder hänger förmodligen samman med en ökad lågtrycksaktivitet, vilket gör att mildre luft pumpas in i regionen. De år med minst is är 1989 och 1961, och dessa rekord har inte slagits. I kontrast till detta har vi 1780-, 1810- och 1690-talen, som är de årtionden med mest is. Detta uppkommer alltså istället av att det kontinentala högtrycket under vintersäsongen får starkare fotfäste, vilket pumpar in kall luft från öst och blockerar lågtryck att ta sig in i området. På en årlig basis är det mycket stor variation i isutbredning, och så även mellan årtionden och århundraden.

Vår modell spottar ut resultat för hela perioden mellan år 1500 och 2001. Men hur kan vi lita på våra resultat egentligen? Vattentemperaturen för Östersjön går att sätta samman med hjälp av instrumentella data från 1970 och framåt. Modelldata jämfört med dessa uppmätta data visar mycket bra överensstämmelse, vilket gör att vi kan lita på våra resultat. Dessvärre önskar man att temperatur fanns tillgängligt längre bak i tiden, men då det inte finns får man helt enkelt vara lycklig över de korta 30 år som finns, och vara medveten om osäkerheten. Det finns självklart massor av data från enstaka punkter runt om i Östersjön innan dess, och kontinuerliga serier för flera av Östersjöns bassänger (exempelvis Arkona, Bornholm eller Östra Gotlandsbassängen) finns att tillgå. Dessa går dock inte att sätta samman till ett gemensamt medel för hela innanhavet. Ytvattentemperaturer har mätts under mycket längre tid (runt början av 1900-talet), och när dessa mätningar jämförs med vår modellerade data är överenskommelsen överväldigande.

Information om isutbredning har vi sedan 1720, varför det inte är så svårt att validera modellerad isutbredning mellan 1720 och 2001. Men hur skall man göra med de 219 åren innan 1720? Det finns en hel del information om isförhållandena runt om i Östersjön nedtecknade i journaler och andra dokument sedan lång tid tillbaka. Tyngdpunkten på dessa anteckningar ligger på södra och sydvästra Östersjön (Danmark, Tyskland och i viss mån Polen), där fartygstrafiken var som intensivast. Flera rekonstruktioner i form av vintersvårighetsgrad samt sammanställande av nedtecknade vinterförhållanden har tidigare gjorts (dock inga rekonstruktioner av Östersjöns maximala isutbredning) och dessa skulle egentligen enkelt kunna användas för att validera modellens resultat. Riktigt så enkelt är det inte, eftersom flera av dessa sammanställningar använts för att rekonstruera lufttemperaturen, som vi använder för att driva vår modell. Skulle vi försöka validera våra resultat mot dessa sammanställningar skulle vi helt enkelt jämföra samma data med varandra, även om det manglats igenom en klimatmodell. Oberoenda data måste alltså användas. Efter en del läsande hade jag och min kollega samlat in tillräckligt med material för att kunna validera vår modellerade isutbredning. För att ett år med modellerad isutbredning skall anses vara validerad skall den modellerade isutbredningen vara över eller under långtidsmedlet för den observerade isutbredningen (1720-2001) så länge som det finns dokument som stödjer modellresultaten. En vinter som visar på under normal ismängd, samtidigt som det finns indikationer på att vintern var kall eller isrik är alltså inte validerad. Totalt fann vi 100 år, spridda jämnt över den 219 år långa perioden, med bevis för milda eller stränga vintrar och av dessa var 68% validerade, vilket är ett mycket bra resultat. Av dessa var 57% av de milda och 71% av de kalla vintrarna validerade. Delar vi istället upp perioden 1500 till 1719 i två 110 år långa perioder och validerar ser man att det blir bättre över tid. Mellan åren 1500 till 1609 var 64% av vintrarna validerade (63% av de kalla och 64% av de milda) med det mellan 1610 och 1719 var 73% av vintrarna som var validerade (81% för de kalla och 44% för de milda). Att de milda vintrarna lyckas mindre bra i valideringen beror bland annat på att antalet nertecknade milda vintar var väsentligt färre än nedtecknade kalla vintrar (i de källor vi letade). Kanske var det viktigast att hålla kolla på de kalla vintrarna, eftersom de förde störst risk med sig. Dessutom är våra modellresultat något för kalla jämfört med den observerade isutbredningsserien. Det medför att milda vintrar blir svårare att validera, eftersom långtidsmedlet för den observerade serien är lägre än för den modellerade. Flera av de milda vintrarna ligger dessutom på vippen att bli validerade (hade isarean bara varit nästan försumbart mindre hade valideringsgraden istället varit 89% för milda vintrar). Så vad gäller trovärdigheten till våra modellersultat anser jag den vara hög. Dessutom kan vi notera att Östersjön sedan 1500-talet aldrig varit isfri, vilket jag betvivlar att den någonsin kommer bli.

Rent allmänt kan man notera att det trots andra mekanismer, som påverkar klimatet idag jämfört med förindustriell tid, inte är helt klart och tydligt att värmeperioden under 1990-talet och framåt är något som går utanför den interna variabilitetens gränser för området under de senaste 500 åren. Det betyder att den interna variabiliteten är större än vad vi tidigare trott, att förändringarna över tid gått snabbare än vi tidigare trott och att vi kanske ännu inte är helt utanför det område som är naturligt förkommande över århundranden hos oss – oavsett vad det är som ligger bakom den nuvarande värmeperidoen. Det är också en slutsats som ligger i linje med BACC-rapporten. Med detta i bagaget blir det enklare att göra scenarier för framtiden.

För att avsluta kan jag också nämna att vi försökte oss på att använda utdata från en global klimatmodell, nämligen den tyska kopplade ”EcHo-G”-modellen (ECHAM för generell atmosfärcirkulation kopplas med oceanmodellen HOPE-G). Vi nöjde oss med att jämföra dess lufttemperatur för Östersjöregionen med de rekonstruerade lufttemperaturen vi använt för vår 500 år långa modellkörning, samt de uppmätta vid riktiga stationer runt om i regionen. Det visade sig tyvärr att global klimatmodelldata ännu har allt för låg kvalité för att kunna användas på detta sätt. Den säsongsmässiga variationen var mycket snäv; allt för kalla somrar och orealistiskt varma vintrar. Dessutom fanns det en stark värmande trend från 1750-talet i EcHo-Gs simulerade lufttemperatur, något som inte går att finna i varken rekonstruerade lufttemperaturer eller i uppmätta data. Hur kvalitén från andra vida använda klimatmodeller är har vi tyvärr ännu inte analyserat. Jag kan bara hoppas att de är bättre.

Dags för en mycket kort sammanfattning. Vad har vi lärt oss?

  • Proxyrekonstruktioner av temperatur och tryck går utmärkt att använda som bas för att driva en klimatmodell över de senaste 500 åren. De nödvändiga drivningarna (vattenstånd, färskvattentillförsel etc) går att härleda ur dessa.
  • Flera värmeperioder har inträffat mellan 1500 och 2001; 1730-, 1930- och 1990-talen, vilka var ungefär likbördiga i magnitud
  • Förändringar mellan normaltillståndet i regionens klimat, mot värme- och köldperioder har gått snabbare än vi tidigare trott, samtidigt som de varit större än vi tidigare trott.
  • Köldperioder inträffade i slutet av 1600-talet och i mitten av 1700-talet, men också flertalet korta sådana, så som tidiga 1940-talet och mitten av 1980-talet
  • Vattentemperaturen var som kallast år 1695 och som varmaste år 1975, samtidigt var 1900-talet det varmaste århundradet sedan 1500-talet
  • Isen har under fler gånger reducerats på grund av milda vinterperioder. Det skedde under 1730-, 1740-, 1930- och 1990-talen då likvärdiga isförhållanden rådde i Östersjön.
  • År 1989 var isen den minsta uppmätta, medan 1961 var den näst minsta uppmätta. Arean då uppgick till cirka 52 000 kvadratkilometer (jämförbart med Bottenhavets yta). Isfri har Östersjön aldrig varit sedan 1500-talet, och kommer troligen inte bli i framtiden.

För den som är intresserad att läsa hela artikeln är det bara att maila och be mig snällt om en pdf-version. Det finns mycket mer att upptäcka.

Uppdatering 28/10: Jag har skapat en figur över vattentemperaturen och isutbredningen i Östersjön. Se här. Gråa linjer och staplar är individuella år, röda linjer är 11-årigt glidande medelvärde.

oktober 16, 2007

Konst i glaciärdynamikens tjänst

Under 1800-talet kunde man nog knappast ana att dåtidens konstverk i form av målade vyer skulle komma i till vetenskapligt bruk över 150 år senare. I en ny artikel i Global and Planetary Change har tavlor och fotografier av glaciärer i Alperna har avslöjat hur dessa har växt till och smält över en längre period. Tack vare detta har dynamiken för glaciärerna blivit lite bättre kartlagd. De två glaciärerna (Lower Grindelwald Glacier i Schweiz & Mer de Glace i Frankrike) är varit föremål för en serie tavlor under 1820-talet, och fotografier under 1850-talet. Genom att koppla dessa momentana bilder av glaciärer med rekonstruerade temperaturer för regionen, går det att fördjupa förståelsen kring hur glaciärer (iallafall dessa två) beter sig i ett föränderligt klimat.

De två undersökta glaciärerna nådde sitt absoluta maximum under 1600-talet och har därefter inte uppnått samma storlek igen. Under 1820-talet nådde glaciärerna ett nytt maximum i sin utbredning om än några hundratal meter mindre än tidigare. Lite senare, under 1850-talet, växte de åter till sig och nådde ytterligare ett maximum, innan de ganska kraftigt började smälta av. Den snabbaste avsmältningen skedde under 1800-talets senare del då glaciärerna under en 20-årsperiod retirerade över 1 kilometer innan mer stabila förhållanden erhölls (Grindelwald-glaciären retirerade 1 kilometer mellan 1860 och 1880 medan Mer de Glace smalt av 900 meter mellan 1867 till 1878). Ytterligare 1 kilometer retirerade glaciärerna under hela 1900-talet – framförallt mellan 1940- och 1970-talen.

Snabba förändringar i glaciärernas massbalans är inte något konstigt. Den Lilla Istiden tog slut och ersattes av en mildare klimatregim under slutet av 1800-talet. Om glaciärerna då hade en större massa än vad den nya klimatregimen kunde upprätthålla behövde alltså en ny balans uppnås. Sådana anpassningar går relativt snabbt och är ofta dramatiska. Den nya mildare klimatregimen tog plats nästan synkront i hela Europa och Nordamerika, och vi ser förändringen tydligt även i dataserier från Östersjöregionen, som exempelvis den maximala isutbredningen. Åter till glaciärerna. Vilka mekanismer var det som gjorde att glaciärerna växte och retirerade under 1800-talet? Tillväxten under 1820-talet berodde främst på något lägre sommartemperaturer och högre nederbördsmängd under hösten medan smältperioden under 1800-talets senare del snarare var dominerad av de högre vårtemperaturer som kom i och med den nya klimatregimen fick fotfäste, men även mindre nederbörd spelar såklart en viktig roll. I motsats till 1820-talets tillväxtperiod, då lägre sommartemperaturer spelade en stor roll, är sommarens temperatur under smältperioden av mycket liten vikt. Det kan sättas lite i perspektiv till att det faktiskt är vårtemperaturerna som är dem som ökar snabbast för tillfället, med vintern strax efter följt av sommaren och sist hösten (hos oss i Östersjöregionen har dock inte höstarna riktigt bestämt sig om de vill bli varmare eller inte).

Gamla målningar är inte bara vackra att titta på, de är också viktiga för att förstå klimatsystemet. I övrigt vill jag upplysa om att det är mycket att göra just nu och att frekvensen på inläggen tenderar att bli något lägre än förut.

oktober 3, 2007

Periodiserad kyla och värme

Den nordatlantiska oscillationen (NAO) är viktig för vårt klimat, speciellt under vinterhalvåret, och ges av tryckskillnaden mellan Azorerna och Island. En positiv fas ger mer nederbörd och varmare temperaturer, medan en negativ fas ger motsatt effekt. Det har föreslagits att de olika klimatperioderna – medeltida värmeperioden och lilla istiden – kan ha varit ett resultat av att NAO under en längre period höll sig till en positiv eller negativ fas. Två kanadensiska forskare publicerade häromdagen en artikel i Paleoceanography där de försöker finna svar på om NAO kan ha varit en dominerande faktor i de olika klimatperioderna.

I en modell för Nordatlanten testades olika scenarier; en där NAO dominerades av en positivt fas och en där den negativa fasen var frekvent. Det kan ses som ett antagande där positiv fas motsvarar medeltida värmeperioden och en negativ fas motsvarar lilla istiden. De fann att om NAO befinner sig i en huvudsaklig negativ fas kommer havscirkulationen att sakta ner, vilket ger kallare temperaturer i framförallt Europa och östra Nordamerika. På samma sätt fann de en motsvarande reaktion, fast tvärtom, på en i huvudsak förlängd positiv NAO-fas. Det kan tolkas som att havscirkulationen är kopplad till NAO och att klimatperioderna var ett resultat av mer eller mindre värmetransport upp i Nordatlanten.

Den positiva fasen är inte lika stabil som den negativa fasen vilket beror på interna processer så som att nordgående strömmar förändras mer i styrka över tid och förändrar väg. Det skulle isåfall innebära att den nordatlantiska regionen under en värmeperiod var rumsligt mer varierande i temperatur än under en köldperiod. Så verkar dock inte vara fallet under kortare varma och kalla perioder på den regionala skalan i Östersjön (återkommer till detta vid ett senare tillfälle). Författarna medger dock att det finns få bevis i form av klimatdata som stödjer en sådan teori om instabilitet, även om de har hittat några enstaka proxydata som kan stödja deras hypotes.

Då modellen körs i en företrädelsevis positiv NAO-fas tyder resultaten på oscillationer om 70 år, vilket är nära de 65 år som AMO oscillerar med (vilken i sig några anser vara relaterad till bland annat orkanfrekvens och styrka, och andra anser vara en inbillning). Om den modellerade oscillationen är identisk med AMO tyder det på att havscirkulationen, modulerad av NAO, är knuten till AMO. Men om det är AMO som sätter NAO i en positivt/negativ fas, eller tvärtom, går inte att avgöra (mycket på grund av att AMO ännu inte är väldefinierad och att mekanismerna bakom NAO är svåra att reda ut då inte den heller är helt kartlagd). Författarna tar också upp en frågeställning som är intressant att försöka besvara. Om NAO tenderar att gå mot en mer positiv fas under varmare förhållanden (vilket inte är helt givet), kan det då vara så att den nordatlantiska regionen går mot mindre stabilt klimat? Det är en stor nöt att knäcka. Däremot vet vi att NAO varit i en primärt positiv fas sedan 1990 – frågan är då, har det under denna (allt för) korta period blivit mindre stabilt?

september 5, 2007

Fimbulvintern 1740

Filed under: Historia,Klimatdata,Regionalt,Rekonstruktioner,Temperaturer,Väder — by Daniel @ 20:26

Vintern började redan i september och varade till maj månad. De tyska floderna var isbelagda redan i oktober. Mellan den 6 till den 8 januari var kylan outhärdlig. Fåglar föll ner från himlen, hönsen tappade sina kammar, människor miste öron och näsor eller frös till döds och juvren på kossorna frös till is. Rovdjur trängde in i landsbyarna och strök omrking utanför Königsbergs stadsmurar. Vargarna grävde sig in i stallarna och åt boskapen. [not: sammanfattning enligt C.I.H. Speerschneider]

Så beskriver Johann Goeze vintern 1740. Från detta förstår man ganska snabbt att vintern detta år var av mycket sträng natur, även om beskrivningen av densamma förmodligen är starkt överdriven. Christian Speerschneider sammanställde 1915 många nedskrivna källor från åren efter 1740 och det är tydligt att denna vinter satte stort avtryck på befolkningen. Inte helt oväntat var lilla Bält och Öresund tillfruset i januari och februari och fraktvagnar kördes i skytteltrafik över isen. En del fauna bytte regent; renar hjortar vandrade från Själland till Skåne och vargar från Skåne till Själland (vilket får mig att osökt tänka på reklamen med fiskbullarna som byter burk; ”Mmm, hummersås. Finns det plats för en till?”). I Sverige transporterades posten mellan Grisselholm och Åbo över isen utan problem, något som kanske inte var helt ovanligt under många vintrar (det skedde också några gånger under 1900-talet), men ändå beaktningsvärt. Runt om i Europa frös de flesta floder till (inte minst Themsen, Rhen och Seine), vilket inte hade skett i samma omfång sedan 1709. Enligt vissa samtida skribenter var vintern 1740 tillsammans med vintern 1608 den kallaste på hela årtusendet och varade från 24 oktober till 13 juni (vilket kanske är en överdrift). I delar av Storbritannien skulle det tar 223 år innan en kallare vinter inträffade 1963. Tyvärr verkar vintern 1740 inte ha bjudit på några kända spektakulära isvandringar (danskarna verkade inte vara revanschsugna), om vilket jag skrivit om tidigare och även skrivit en krönika om i Berlingske Tidende.

Även om vintern 1740 var otroligt kall i Europa bör man ha i minnet tidspunkten för dess inträffande. Det var inte så att vintern var ovanligt kall i en annars ganska ”normal” tid med våra moderna ögon sett. Nej. Sedan 1720-talet hade temperaturerna stigit och 1730-talet var varmare än omkringliggande årtionder i Väst- och delar av Nordeuropa. På många platser skulle det inte bli varmare förren 200 år senare under 1930-talet. Människan anpassar sig ganska snabbt till de mildare vintertemperaturerna och en rejäl skillnad från ett år till ett annat gör en mycket kännbar skillnad i medvetandet hos folk – inte minst med de faror en sådan kall vinter kunde medföra i form av svält och andra otrevligheter. För en tids sedan satte en artikel den avvikande vintern 1740 i kontext med omkringliggande och nuvarande år. I England, Holland och Tyskland var medeltemperaturen flera grader under det normala, och jämfört med årtiondet innan var vintern ner till 3 grader kallare. I Sverige har vi för den här tiden endast en tidsserie med temperatur och den härstammar från Uppsala vilket påbörjades 1722 av Anders Celcius själv. Vintertemperaturerna i Uppsala fram till slutet av 1730-talet är liknande dem under 1930- och 1990-talet, även om det kan diskuteras en hel del hur pålitliga dessa tidiga mätningar är – trots intensiv kvalitetssäkring (samma mönster upprepas, med mindre variationer, i både Central Englands, DeBilts och Berlins temperaturserier). Under den första tiden mättes temperaturen i Uppsala inomhus i ett välventilerat rum, vilket såklart ger en del frågor rörande kvalitén, men korrigeringar har gjorts med närliggande stationer och ger bra överensstämmelser. Trots osäkerheter i början av 1720- och 1730-talet var dekaderna förmodligen varmare än efterföljande årtionder. Skillnaden mellan Uppsala och Västeuropa är att vintern 1740 inte står ut som osedvanligt kall. Detta trots att det i delar av Svealand, Götaland, våra grannländer och längs Östersjöns sydkust finns rikligt med kvarlämningar i form av skrifter som dokumenterar den extremt kalla vintern. I Göteborg kunde exempelvis tre av Ostindiska kompaniets fartyg inte lämna landet förren i april eftersom de var infrusna i isen. Östersjöns is var denna vinter enligt uppskattningarna utbredd till sitt maximum, vilket indikerar en mycket kall vinter åtminstone söder om Åland. Omkring och norr om Åland fryser det nästan alltid helt utan problem vid normala vintrar och där ger isutbredningen mindre hjälp. Tallins vintertemperataturserie, sträckandes från 1500 till idag, rekonstruerad från frys- och uppbrytsdatum i Tallins hamn, indikerar att första halvan av 1700-talet var ovanligt mild, men också att vintern 1740 var mycket kall. I Riga bröt isen upp mycket sent under våren och det tyder på en rejält kall vinter.

Frågan blir varför mellersta Sverige inte upplevde en ovanligt kall vinter när resten av Europa gjorde det, och trots att hela Väst- och Nordeuropa precis avslutat en ovanligt mild vinterperiod. Inte heller närliggande uppbrytningsdatum från Mälaren indikerar en speciellt kall vinter i historiskt perspektiv, även om uppbrytningsdatumet under perioden 1712-1740 var den senaste. Går vi längre upp i regionen, till Tornio älv, finner vi att den rekonstruerade vårtemperaturer (april-maj) var något kall, men ändå inte anmärkningsvärd på grund av en ganska högfrekvent förekomst av sådana kalla vårar (isuppbrytningen skedde cirka 20 dagar senare än normalt jämfört med 1961-1990). Det är lite orättvist att jämföra vår med vintertemperaturer, men förmodligen finns det ett ”minne” i isuppbrytningen som kan påvisa mycket milda/stränga vintrar. 

Författarna till ovannämnda artikel föreslår att temperaturgradienten över Nordeuropa, och speciellt Sverige, under vintern 1740 var försvagade hög/lågtryck över Azorerna/Island och ett starkt högtryck över Nordeuropa. Beroende på positionen på högtrycket blev inflödet av kall luft i området reglerat. Vad som är anmärkningsvärd är den snabba uppvärmningen under 1720-1730-talen och det snabba skiftet under vintern 1740 – från mycket milt till extremt kallt på ett år. En liknande situation inträffade under milda 1930-talet och de tre mycket kalla påföljande krigsvintrarna. Detta ger en fingervisning över vilka variationer man kan förvänta sig i vårt område i normalfall, ty det är fortfarande så att vi inte riktigt förstått hur stor den interna variationen är i regionen. Även om tendensen med stor sannolikhet är stigande temperaturer framöver kommer det med någorlunda säkerhet att bli några vintrar som slår till och ge riktigt vargakyla. Kanske inte såpass kallt som vintern 1740, men vem vet. I takt med att fler gamla dataserier och dokument ser dagens ljus kan studier fortsätta den kartläggningen. Ju mer vi vet om det, ju bättre bli våra klimatmodeller och våra framtidsscenarier.

augusti 12, 2007

Lästips – 500 år av färskvattentillförsel till Östersjön

Filed under: Östersjön,Lästips,Rekonstruktioner — by Daniel @ 11:42

I ett stycke arbete, som jag och mina kollegor har gjort, har vi försökt att rekonstruera färskvattentillförseln till Östersjön över de senaste 500 åren. Färskvattentillförseln är en indikator på integrerad nederbörd i området, och nederbörd är kanske viktigare än temperatur att studera när det gäller klimatförändringar. Östersjön är som bekant ett innanhav med bräckt vatten. Förändringar i vattenbalansen kan medföra stora förändringar i salthalt, och därmed ekosystem. Det sker dock inte momentant. Tidsskalan för förändringar i Östersjöns vattenbalans är 33 år enligt Omstedt & Hansson (2006). Vi vet sedan tidigare att den salthaltsvariationen i Östersjön är cirka 1 över 30 år (medelsalthalten i Östersjön är 7). Över de senaste 500 åren har ingen större förändring skett på årlig skala i färskvattentillförseln till Östersjön, vilket ger viss tydan på att nederbördsmönstret förmodligen inte förändrats särskilt mycket under denna tid.

The statistical analysis revealed that there is large interannual and interdecadal variability in the annual river runoff to the Baltic Sea. However, no statistically significant trend was observed over the last half millennium, which implies no significant change in precipitation in the Baltic Sea catchment area. Changes may have occurred on an interseasonal time scale but have not been investigated in detail at this point.

De första preliminära resultaten från denna studie går att läsa om i augustinumret av GEWEX Newsletter (GEWEX är en del av WCRP). Arbetet går nu vidare att analysera data i mer detalj, vilket förhoppningsvis kommer ge svar på många av våra frågor (men med absolut största säkerhet [>99%] ge upphov till ännu fler funderingar).

juni 20, 2007

Historiskt perspektiv på hösten 2006 och vintern 2007

Den första prognosen för vintern 2007 (alltså den vinter vi har vart igenom) pekade på lite mer normaliserade temperaturer efter en varm höst. Så blev inte fallet och vi vet alla att vintern var ganska mild i stora delar av landet, även om det blev uppvägt med betydligt kallare väder mot slutet av säsongen. Om vi blickar utanför rikets gränser och ser till Europa som helhet var de sex månaderna, som utgör höst och vinter, mellan september 2006 till och med februari 2007 den varmaste sexmånadersperiod som någonsin uppmätts i Europa. I en ny artikel publicerad i Geophysical Research Letters av våra Schweiziska vänner sätts hösten 2006 och vintern 2007 i lite längre tidsperspektiv.

Tidigare artiklar av våra vänner var en rekonstruktion, som sträcker sig över de senaste 500 åren. Denna rekonstruktion, om än uppdaterad att inkludera data till och med februari 2007, användes för att uppskatta hur varm de sex månaderna från september 2006 till februari 2007 var. Författarna fann att det var extremt troligt (>95% enligt samma metod som används av IPCC) att dessa månader var de två varmaste höst- och vintersäsongerna i Europa på över 500 år. Både hösten (1,7°C varmare än normalen [1961-1990]) och vintern (2,4°C varmare än normalen) var mer än tre standardavvikelser från normalen, vilket är ganska ovanligt. Dock skall man väl komm ihåg att det kan vara så att data bakåt i tiden, då tillgängliga mätserier och proxy-data blir färre och sämre upplöst, kan ge en lite sämre representation av verkligheten och att osäkerheterna kan vara underskattade. Det är inte till att veta eftersom vi inte kan jämföra med något, men vi får tillsvidare antaga att så inte är fallet. På samma sätt som ovan var hela sexmånadersperioden i princip uteslutande säkert (>99% säkerhet) den varmaste på över 500 år.

Innan år 1500, vilket är det år rekonstruktionen som använts ovan startar, finns flera nedskrivna dokument, som kan användas för att jämföra om någon liknande händelse, som den som inträffade 2006/2007 skett tidigare. För vintrarna och på regional skala (alltså inte Europeisk skala vad vi vet) verkar vintrarna 1186/87, 1205/06 och 1360/61 vara liknande vintern 2007, med skillnaden att de förgående höstarna inte var exceptionellt varma. Men det finns ett år, som verkar ha liknande karaktär som höst- och vinterperioden 2006/07; året var 1289/90 och en okänd skribent i Basel antecknade att övergången från höst till vår skedde utan avbräck (alltså ingen vinter), att träden behöll sina löv fram tills dess att nya kom, att jordgubbar åts vid jul (whoa, vilken flashback), att druvrankorna knoppade, växte och till och med blommade i januari samt att fruktträden blommade i Venedig i januari precis som de gör i maj.

Orsaken till den varma perioden härleds till inströmmande varm luft från subtropiska områden i Atlanten, vilka hade ovanligt höga ytvattentemperaturer under perioden. Även, som jag tidigare diskuterat, den nordatlantiska oscillationens positiva fas under vintern bidrog starkt till att underlätta inflödet av mild luft. Fler faktorer kan också ha spelat in, och det är svårt och osäkert att säga hur stor varje del är. Andra faktorer inkluderar interaktion mellan atmosfär och land, albedoeffekter från snö, teleconnection med varma ytvattentemperaturer, havsströmmar och antropogena effekter. 

Den varma perioden 2006/07 bidrog också till viss rubbning av växternas blomning, speciellt hassel och snödroppar (I Sverige hade vi också rapporter om tussilago och kantareller i december). För både växterna skedde blomningen iår 37,6 och 22,2 dagar tidigare än normalt (1951-2007). Det är kanske inte så  konstigt eftersom 75% respektive 72% av variansen för blommningsdatumet för hassel och snödroppar kan förklaras av temperaturerna i januari och februari. Författarna gör en enkel regressionsanalys och finner att hassel och snödroppar blommar 11,3 respektive 8,3 dagar tidigare för varje grad över det normala från februaritemperaturen. På samma sätt finner de att blomningsdatumet kommer tidigare för varje år; 0,41 dagar per år för hassel och 0,28 dagar per år för snödroppar, även om det finns stora årliga variationer.

Vi skall nu avverka en sommar innan nästa höst kommer. Det skall bli intressant och se om även den kommande hösten och vintern bär samma signatur som förra året.

Uppdatering 26/6: I en annan artikel, som just nu befinner sig i open access review, beräknas händelsefrekvensen för en  höst av 2006 års kaliber. Uppskattningsvis vart 200 år bör en sådan höst infalla vid ett föränderligt klimat mot varmare temperaturer (om man antar stationäritet bör det istället vara 10 000 år).

juni 13, 2007

Blåsigt värre i Nature

Tidskriften Nature har i de senaste numren haft några artiklar och news features rörande tropiska cykloner och orkaner. Den stora 10 000 kronorsfrågan om vilka mekanismer som driver orkaners aktivitet är ännu inte besvarad, men många förslag har lagts fram. Exemplen varierar mellan blixtar, shear, nederbörd, kyla, eller bara inhomogena dataserier. Ytvattentemperaturer är i alla dessa fall snarare en indirekt påverkande faktor, men inte den primära drivande kraften, vilket ibland hävdas.

I Nature (24/5) publicerades en artikel, som undersöker orkanaktiviteten i Atlanten över de senaste 5 000 åren med hjälp av nytagna sedimentkärnor från Vieques utanför Puerto Ricos östkust. De fann att aktiviteten har haft ganska mycket variabilitet över de 5 senaste millenia. Aktiva perioder har det var mellan 5400-3600 år sedan (år ”noll” är satt till 1950), 2500 år sedan och för 1000 år sedan. Nästa aktiva period dröjde fram till 1700-talet och den pågår fortfarande. Dessa perioder bekräftas även av andra kronologier från andra platser runt om i Atlanten. Det finns från Puerto Rico antecknat att endast tre orkaner gjorde landfall mellan år 1550 och 1700. Mellan åren 1700 och 1850 ökade antalet till sexton. Att detta skulle vara ett resultat av bättre anteckningar ju närmre nutid vi kommer verkar dock inte stämma. Rekonstruktioner från sediment visar på samma fördelning, och dessa sediment har inte blivit sämre eller bättre historieskrivare över åren. Att en period med fler starka orkaner inleddes kring år 1700 bör alltså vara relativt välunderstött.

En jämförelse med temperaturer från området kring Puerto Rico ger dock inga starka bevis för att just ytvattentemperaturen skulle vara en drivande kraft för orkaners ökande intensitet. Under 1700-talet, då en ny aktiv period påbörjades, var ytvattentemperaturerna i det karibiska havet 2 till 3 grader kallare än idag. Vidare inföll en av de mest aktiva perioderna mellan 1766 och 1780, en period som enligt rekonstruktioner av AMO (Atlantic Multidecadal Oscillation) var negativ (kall). Tidigare i historien har samma mönster visat sig genom jämförelser av rekonstruktioner, vilket gör att ytvattentemperaturen förmodligen inte är huvudorsaken till hög orkanaktivitet. Författarna efterlyser högre upplösta ytvattentemperaturrekonstruktioner och mixed layer-tjockleken för att kunna undersöka frågan närmre.

Så vilkan övriga mekanismer anser de spela en viktig roll för bildandet av intensiva orkaner? Först och främst konstaterar de att El Niño tenderar att minska aktiviteten, medan La Niña ökar den. Det såg vi inte minst förra året då ett El Niño-fenomen oväntat dök upp i Stilla Havet och avslutade säsongen tidigt. Iår ligger varningen ute för att en La Niña kan uppkomma och därmed göra årets orkansäsong ännu värre än de första prognoserna. Detta mönster har också hållt sig genom historien. Under de hittills lågintensiva perioderna har omständigheterna favoriserat fler El Niño-händelser. De intenstiva perioderna har istället haft färre El Niños, så även den senaste perioden, som påbörjades 1700.

Rekonstruktion av nederbörd från Lake Ossa i Kamerun ger en annan ledtråd till orkanernas intensitet. Hög nederbörd över området sammanfaller med perioder med fler intensiva orkaner, och på samma sätt sammanfaller låg nederbörd med färre intensiva orkaner. De perioder då den afrikanska monsunen förstärks och ENSO befinner sig i en sval fas kan AEW (African Easterly Waves) färdas genom områden med gynsamma förhållanden för utveckling av orkaner.

Summa sumarum är alltså att ytvattentemperaturer i tropiska Nordatlanten inte är ett krav för att intensiva orkanperioder skall komma igång, men de spelar förmodligen roll i andra led i tropiska cykloners utveckling.

I numret från sjunde juni kom en artikel om orkanaktiviteten för de största orkanerna över de senaste 270 åren. Grundidén författarna kom med var att den senaste tidens ökning i orkanaktiviteten kanske är en återgång till mer naturlig aktivitet oavsett vad som orsakar det. Enligt dem var aktiviteten under 1970- och 1980-talet ovanligt låg, för att därefter öka till mer normal aktivitet. Den mycket aktiva perioden, i vår referensram, efter 1995 är satt i ett längre perspektiv inget ovanligt alls, utan snarare ganska normalt. Dessutom ger resultaten stöd till ovanstående artikel då perioden kring 1760-1775 verkar vara den mest aktiva perioden (jmf 1766-1780 enligt ovan). Andra perioder med liknande aktivitet som idag var 1756-1774, 1780-1785, 1801-1812, 1840-1850, 1873-1890, 1928-1933. Analyser av data verkar peka på ett cyklist beteende på cirka 10-30 år.

Till grund för artikeln ligger flera proxyserier härledda dels ur koraller från karibien samt sedimentkärnor från Cariacobassängen utanför Venezuelas kust. Det verkar som windshear är den avgörande faktorn då både observerad och rekonstruerad shear i jämförelse med rekonstruerad och observerad orkanaktivitet är omvänt proportioneliga mot varandra. Den ökning av ytvattentemperaturer har därför förmodligen kompentserats av ökad windshear istället. Men om det är en naturlig återgång till normal aktivitet, eller om det är påhjälpt av eventuella antropogena effekter, går inte att mer än spekulera i. Eftersom denna artikel har anknytningar till Göteborgs Universitet och min institution bjuder jag även på länken till pressmeddelandet.

I en tredje artikel från Nature (31/5) undersöks hur omblandningen i havet påverkas av tropiska stormar och inte orkaner specifikt. Stormar över haven blandar om i vattenkolumnen och det är en mycket viktig process att förstå för att kunna utveckla klimatmodellerna till ett mer avancerat stadie. Idag har vi ännu ganska dålig inblick i hur detta system fungerar och haven innehåller betydligt mycket mer värme än atmosfären, varför haven är otroligt viktiga på längre tidsskalor, speciellt om man vill göra någorlunda trovärdiga projektioner för framtiden. Basen för omblandningsprocessen när en storm passerar är att kallare vatten från djupet i vattenkolumen blandas uppåt mot ytan (och också för med sig näringsämnen), vilket ger kallare ytvattentemperaturer och värmetransport neråt. De efterföljande dagarna flödar värme genom ytan för att få balans i energibudgeten. Totalt ger det alltså en uppvärmning av vattenkolumnen, eftersom det nedblandade värmet finns kvar. Eftersom vattenkolumnen inte blir varmare och varmare hela tiden (jag har fortfarande inte sett kokande hav) transporteras vattenmassan i meridionala transporter (exempelvis upp via Golfströmmen, Nordatlantiska strömmen och vidare till de nordiska haven).

Författarna uppskattar att 0,26 PW (1 petawatt = 1015 watt) tillförs havens värmeinnehåll från tropiska stormar. Det kan jämföras med Golströmmen (alltså den del som går från Florida upp en bit längs amerikanska östkusten) som transporterar ungefär 1,4 PW (vilket är samma siffra som Kerry Emanuel år 2001 föreslog blandades ner i haven av tropiska stormar). Ytterligare en intressant detalj är att nerblandningen av värme verkar kunna stå i stark relation till ytvattentemperaturer, och att ganska små ändringar i denna kan öka nedblandningen rejält. Översatt med spets kan man alltså fundera på hur dessa stormar påverkar klimatet. Den aspekten är fortfarande mycket lite utforskad, speciellt eftersom man tidigare i stor utsträckning inte ansett stormar ha såpass stor påverkan.

I samma nummer (Nature, 31/5) finns en News Feature som diskuterar mycket av de olika oceanografiska aspekterna på omblandning i havet, satt i realtion till stormar, tidvatten och virvlar. En del av denna News Feature behandlar också bioturbiditet, alltså hur livet i havet blandar om i vattenkolumnen. Bland annat pekas det på exempel där man visat att krill blandar om vattnet i vissa canadensiska fjordar. Ett annat exempel är en studie som indikerat att det marina livet blandar om i haven lika bra som vind och tidvatten. Det låter ganska enastående om så skulle vara fallet, men en diskussion kring ämnet är intressant. Förmodligen, i min mening, går det mesta av djurens rörelser över till friktion snarare än omblandning varför den komponenten inte bör vara så stor. Men konceptet är ändå exotiskt och spännande.

april 23, 2007

Stort, skoj och svulstigt i Wien

En vecka i Wien är intensiv, inte bara på grund av alla mozartkulor och sachertårtor. Ännu mer intensivt blir det när tusentals och ännu mer tusentals geovetare träffas i en och samma konferensbyggnad. Det var första gången jag deltog på en EGU-konferens, och det var nog större än vad jag hade förväntat mig. Att ta in all information är inte varken praktiskt eller teoretiskt möjligt. Tur nog fick jag antecknat en hel del av vad som sades där nere, och jag fick också träffat några av dem jag läst artiklar av (och ibland även skrivit om här på bloggen).

Så vad fick jag reda på? Jag tänker inte redovisa person efter person vad de sa (det blir allt för stort) eller gå in på något i detalj (det mesta av det nedanför sysslar jag ju inte med själv utan bara finner intressant), istället tar jag det i stora drag varför många föredrag och postrar inte kommer att omnämnas även om de var se- och hörvärda.

Solforskarna verkade inte riktigt nöjda med senaste IPCC-rapporten då de anser den underskatta solens roll i systemet. Att varje ny satellit, som skjuts upp för att mäta solstrålningen, ger olika resultat är lite problematiskt och ett stort pusslande. Från proxyfolket är det problem med att datumsätta proxyserierna eftersom den metod man hittills använt är ganska oexakt. Vi fick också veta att Dansgaard Oeschger-händelserna inte är periodiska och att de inte drivs av externa faktorer såsom solstrålning.

Mycket pratades det om värmetransporterna i haven och deras betydelse för klimatet. Som vi vet varierar det ganska mycket på en sub-årlig skala hur mycket värme som transporteras norrut (och söderut) i systemet. Det kan ju få som följd att vissa skriker vargen när det egentligen är en liten guldfisk. Det krävs betydligt längre mätningar än 1 år för att förstå hur variabiliteten är i haven. Med den transektmetod som användes, och som sedan blev en vargen kommer-nyhet, krävs det en tidsskala på århundraden för att kunna konstatera förändringar i MOC. En ny mätmetod, bestånde av flera fasta kontinuerligt mätande bojar tvärs Atlanten, kan istället vara bättre. Använder man den metoden behöver vi bara vänta någonstans i storleksordningen 50-60 år innan vi kan se någon förändringar i MOC. Används istället både transekter och bojar samtidigt förkortas tidsskalan ytterligare till ett antal årtionden. Det går alltså inte med dagens mätningar att skilja på variationer och/eller trender i data gällande MOC. I övrigt noterade jag att den händelse, som inträffade i november 2004 och som fick stor skrämselgenomslag i världsmedia snarare betecknas som lite kuriosa hos forskarna och inte som särskilt katastrofal eller ens direkt märkvärdig i sig. Det enda man kan säga är att instrumenten blev fler och bättre i början av 2000-talet och att man helt plötsligt bara fick bättre upplösning. I övrigt fick vi också lära oss om att minnet i haven är olika – från Atlanten som har ett ganska långt minne till Stilla Havet som snarare verkar lida av alzheimers.

Värmeinnehållet i haven är en ganska het fråga. Beroende på vem man frågar kan man få helt olika resultat, dessutom har man nyligen upptäckt ganska stora felkalibreringar hos instrumenten, varför vissa föredrar att utesluta instrument. Jag har anledning att återkomma till detta ganska snart i och med en just sådan rättelse till ett tidigare inlägg. Enligt Levitus, som höll ett föredrag i Wien, rasar för tillfället en ganska hetsig debatt om hur man skall korrigera alla data som visat sig vara fel, och det är inte världens lättaste uppgift. Dessutom har man bara under de senaste åren börjat täcka in även södra halvklotets hav i värmemätningarna, och det påverkar också data i viss utsträckning.

Högupplösta tidsserier av temperatur eller nederbörd i olika områden upptog också en del av veckan. En serie från Island visade bland annat på höga ytvattentemperaturer under medeltida värmeperioden, och att temperaturen sedan dess minskat. Mycket snabba förändringar på uppåt 1 grad skedde när värmeperiden började och avslutades. För Atlantens djupvatten, och ventilationen av djupvatten är kalla perioder goda nyheter då ventilationen sker oftare trots att transporten upp i Atlanten via flordiaströmmen är svagare. Som kompensation får istället vattnet en högre densitet, vilket ger mer djupvattenventilation. I Medelhavet var det under den medeltida värmeperioden också högre produktion då det nuvarande sydeuropeiska klimatet förflyttades längre söderut. Gränsen, som idag går i nordafrika, har flera gånger förskjutits fram och tillbaka över Medelhavet. I västafrika var det under den romerska värmeperioden mycket blötare än idag. Nordafrika fungerade ju som Roms kornbod, men sedan blev det helt plötsligt torrare, vilket gav mindre mat till rikets invånare, vilket i sig skulle kunna vara en bidragande orsak till rikets kollaps. Jag gillar dessa teorier, även om man inte kan förklara samhällens kollaps med en enda faktor – det är alltid många som samverkar. Iallafall verkar nederbördsmönstret i nordafrika variera i cykler på 500 år och att det efter medeltida värmeperioden har blivit betydligt torrare än vad det varit tidigare i området.

Stormar (inte orkaner) är ett ämne som många pratar om, speciellt nu efter vi har haft flera i vårt område – inte minst Gudrun och Per, och allt annat vad de nu heter. Även om många redan vet det har inte stormarna i Europa ökat nämnvärt på senare tid. På längre sikt, sedan slutet av 1800-talet, har de istället minskat, förutsatt att man har tilltro till data. En viss ökning skedde 1960-1990, men därefter minskade stormigheten igen. Och det är liknande resultat som BACC fann för Östersjöområdet, att stormigheten inte har en trend alls. Vi skall dock hålla oss kvar i atmosfären lite och vända blicken mot NAO, detta fenomen som ofta styr vintrarna hos oss. Normalt brukar man se det som tryckgradienten mellan Azorerna och Island, men en ny tolkning ger en annorlunda bild. Man skall tänka sig NAO som brytande vågor i stratosfären över Grönland, vilket föranleder blockeringar över Europa. Blir NAO positiv betyder det att färre vågbrytningar sker, och ett negativt NAO följdaktligen att fler vågor bryts.

Känslorna svallade ibland ganska mycket på föredragen. Jag var med om iallafall två sådana tillfällen. Dels var det en fransk professor inom solmagnetism som retade gallfeber på en kvinnlig modellör genom att säga att solens magnetfält är direkt ansvarigt för intensiva orkansäsonger, smältande isar och förändrade ekosystem. Ganska kontroversiellt må jag säga, och tyvärr var jag inte med under hela föredraget så jag missade på vilka data han underbyggde sina teorier. Men nog var det väldigt underhållande gräl de hade, lite på catfight-stadiet. Den andra händelsen var när Fred Singer höll låda. Han pratade om CCSP-rapporten (vilken ingen europeisk forskare verkar ha läst eftersom nästan ingen räckte upp handen när Singer frågade vilka som läst den – jag har inte läst den) och hur själva rapporten skiljer sig från sammanfattningen. Han tyckte det var den fullständiga rapporten man skulle läsa och inte sammanfattningen eftersom sammanfattningens slutsatser inte har stöd i rapporten. Singer uppmuntrade därför alla att läsa den fullständiga rapporten snarare än sammanfattningen (han hänvisade bland annat till skillnader i modellresultat kontra mätningar de olika lagrens temperaturvariationer i atmosfären). Givetvis fick detta mothugg från en annan amerikan som ansåg att Singer inte höll sig till sanningen. Denna person, vem det nu var, tyckte istället man skall läsa sammanfattningen, eftersom den är lättare att förstå (jag antar också han anser att sammanfattningen och rapporten ge samma stöd till vad som än står däri). Men, det man kunde dra som slutsats var att Singer ansåg man skulle läsa en fullständig rapport och hans kommentator att man skulle läsa sammanfattningen. Det gav inte så mycket klarhet, men det var inte oväntat.

En liten kuriosa är att dagarna, på grund av växthusgaserna, kommer bli längre i framtiden, hela 0,65 millisekunder längre till år 2100. Dessutom kommer vikten att öka hos en människa som väger 80 kg idag; år 2100 kommer han eller hon att väga 0,001 milligram mer.

Och för dig som brukar illustrera solen med hjälp av en apelsin – byt till en citron istället eftersom det är mer likt formen på solen.

I övrigt hade jag två postrar där nere och det var väldigt givande. Fick träffat många människor som var intressanta och genuint intresserade av vad man sysslade med. Sånt gillar jag, speciellt eftersom det var första gången på en sådan konferens och man inte känner många folk ännu. Men även om det kan se så ut är det inte alltid lätt att stå med ett stort brett leende i två timmar. Dags att ta den här vitamininjektionen och använda den till något vettigt i arbetet…

mars 31, 2007

Vinterregn i Europa, åren 1700-2000

Filed under: Atmosfären,Klimatperioder,Rekonstruktioner — by Daniel @ 9:27

Nederbörd är en viktig parameter att studera när klimatet förändras. För stora delar av Europa är nederbörden under sommaren direkt avgörande för avkastningen från sådden. För lite regn ger torka och dålig växt, för mycket regn ger också dålig tillväxt och risk att skörden ruttnar bort. I området kring medelhavet är det istället vinternederbörden som är viktig då den bestämmer vattentillgången över återstoden av året. Sett till den storskaliga cirkulationen är vinternederbörd, på samma sätt som vintertemperaturen, en parameter som snabbt förändras när klimatet förändras i motsats till sommarnederbörden, vilken är mer kopplad till lokala effekter. I en ny artikel i EGUs open access-tidskrift Climate of the Past studeras frekvensen av nederbördsextremer vintertid i Europa sedan år 1700 och framåt. Data tidigare finns, men har på grund av sin dåliga kvalité valts bort (för få källor ger mindre realistisk variabilitet). Fyra regioner i Europa studeras speciellt: Irland, Spanien, Centraleuropa och nordöstra Europa.

Vad fann man så? Det visade sig att nederbörd varierat ganska mycket över tioårs- och hundraårsskalan, vilket är föga förvånande. Risken för en extrem, både åt det torra eller blöta hållet, har inte varit konstant sedan 1700-talet, istället har det varierat ganska kraftigt runt om i Europa och ej alltid i harmoni med varandra. Extremtorra vintrar inträffade under första hälften av 1700-talet ungefär var 5-10 år medan de under artikelns referensperiod (1951-2000) inträffade var 20 år. Geografiskt var torra vintrar mer sällan förekommande på den Iberiska halvön, sydöstra Europa och de brittiska öarna från början av 1700-talet till mitten av 1800-talet. Under första hälften av 1800-talet var torra vintrar sällsynta i hela Europa, jämfört med 1951-2000. För väldigt våta vintrar var det under första hälften av 1700-talet dubbelt så vanligt i centrala och östra Europa jämfört med referensperioden, men sett från 1750 till 1950 var blöta vintrar mindre vanligt än under andra hälften av 1900-talet. Generellt sett har vinternederbörden blivit mer extrem över tid.

Så vad beror dessa förändringar över tid på? Det mest uppenbara som kommer till minnet är tryck. Tryckförändringar spelar en mycket stor roll (ett bättre ord är kanske ‘styrande’) för hur atmosfärscirkulationen blir. NAO (nordatlantiska cirkulationen) är en sådan mekanism som under vinterhalvåret har mycket stor inflytande över nederbörd och temperatur i Europa (förvisso inte stationär över tid, men näst intill). En positiv fas ger milda vintrar och mycket nederbörd medan en negativ fas ger kalla och torra vintrar – i Nordeuropa (nederbördsmässigt gäller omvänt förhållande i Sydeuropa). Som bekant var NAO i en förlängd positiv fas under 1990-talet. För Spaniens del var det under samma period en lång torka, vilket kan vara kopplat till NAO. Exakt hur NAO fungerar är däremot inte riktigt känt, men flera hypoteser ligger på bordet. En liknande händelse om än omvänd inträffade under maunderminimat (åren runt sekelskiftet 1699/1700). Då var vintrarna kalla och torra eftersom det ryska högtrycket var starkt och kunde pumpa in kall luft över Europa. I Spanien var det istället omvänt förhållande och torra vintrar inträffade sällan. Dessa förhållanden ger en indikation på att NAO var i negativ fas. Eftersom maunderminimat tros hänga ihop med att solfläckarna var få har förslag lagts att solinstrålningen tvingande in NAO i negativ fas, och när perioden var på avslutning tvingande den ökande solinstrålningen NAO att gå in i en mer positiv fas. Mekanismerna bakom detta är dock mycket komplexa och dåligt kartlagda. Andra förslag är att ytvattentemperaturerna i nordatlanten var höga och att det blockerade västvindarna att tränga in i Europa. En kombination är också trolig.

Författarna hävdar att det är mycket svårt att tillskriva rätt mekanism (vulkanism, solaktivitet, växthusgaser etc) till de observerade förändringarna i nederbördsmönstret över de senaste 300 åren. För solens del kan det finnas ett samband, men vi har inte förstått dess mekanism. Vulkanism ger endast upphov till förändringar på korta tidsskalor (<10 år) varför den mekanismen inte förklarar särskilt stor del av det observerade. Intern variabilitet skulle mycket väl kunna stå själv för stora delar av det observerade, framförallt vad gäller förändringar i tryck. Att hitta en förbindelse med växthusgaser är inte lätt heller. Rent allmänt skulle gaserna under andra hälften av 1900-talet ha kunnat gett upphov till mer nederbörd genom en förstärkning av den hydrologiska cykeln, men förändringar likt de observerade har inträffat tidigare, varför en annan mekanism inte går att utesluta. Den bästa gissningen, om man vill helgardera sig, är att förändringarna beror på en mycket komplex sammanvävning av allt det ovan nämnda.

mars 21, 2007

Lästips – Sand och syreisotoper identifierar orkaner

Filed under: Atmosfären,Klimatdata,Lästips,Rekonstruktioner — by Daniel @ 22:23

Ett pressmeddelande från Lousiana State University fångade min uppmärksamhet i veckan. Några forskare har rekonstruerat orkanfrekvensen för de senaste knappt 4000 åren. Artikeln publicerades i American Scientist härom veckan. Då orkaner passerar in över land blåser sand upp och deponeras i sjöar. Detta sedimentarkiv kan sedan avläsas och ge en indikation på hur orkanstyrkorna varierat. För varje givet år är risken 0,3% att en orkan i de kraftigaste kategorierna (alltså 4 och 5) gör landfall på den amerikanska kusten (gulfkusten). Katrina var inte en av dessa, den orkanen var ”endast” kategori 3 vid landfall. Det är intressant att läsa om nya metoder att kartlägga den historiska variabiliteten.

Det får mig också att tänka på en annan och lite äldre artikel om rekonstruktioner av orkanvariabilitet i Proceedings of the National Academy of Sciences. Där presenterades en rekonstruktion för de senaste 220 åren baserat på syreisotoper i träd.

Fascinerande vad mycket intressant proxydata man kan plocka fram med hjälp av olika metoder.

mars 8, 2007

Notis: Mer om interoceaniskt färskvattentransport

I mitt förgående inlägg skrev jag bland annat om Anders Stigebrandts artikel om hur färskvattentransporten från Atlanten till Stilla Havet håller igång djupvattenformationen i Nordatlanten och därmed vidlivhåller Golfströmmen. I Nature kom det för någon vecka sedan en artikel i ämnet, men satt i relation till långa tidsskalor. Artikeln rekonstruerar salthalten i Stilla Havet 90 000 år tillbaka och kartlägger hur Dansgaard/Oeschger– och Heinrich-händelser i samverkan med ITCZs latitudinella position påverkar flödet av färskvatten mellan de båda oceanerna. En kall period, oftast i samband med en migration söderut av ITCZ, ger saltare Stilla Havsvatten. Då regnar det mesta av vattnet ner i Amazonas (eftersom Anderna blockerar transport av färskvatten västerut) och mer sötvatten kommer ut i Atlanten via floder. Salthalten kan därför inte öka så mycket i Atlanten, samtidigt som salthalten ökar i Stilla Havet – saltskillnaden haven emellan minskar.

Abstract:

Moisture transport from the Atlantic to the Pacific ocean across Central America leads to relatively high salinities in the North Atlantic Ocean and contributes to the formation of North Atlantic Deep Water. This deep water formation varied strongly between Dansgaard/Oeschger interstadials and Heinrich events—millennial-scale abrupt warm and cold events, respectively, during the last glacial period. Increases in the moisture transport across Central America have been proposed to coincide with northerly shifts of the Intertropical Convergence Zone and with Dansgaard/Oeschger interstadials, with opposite changes for Heinrich events. Here we reconstruct sea surface salinities in the eastern equatorial Pacific Ocean over the past 90,000 years by comparing palaeotemperature estimates from alkenones and Mg/Ca ratios with foraminiferal oxygen isotope ratios that vary with both temperature and salinity. We detect millennial-scale fluctuations of sea surface salinities in the eastern equatorial Pacific Ocean of up to two to four practical salinity units. High salinities are associated with the southward migration of the tropical Atlantic Intertropical Convergence Zone, coinciding with Heinrich events and with Greenland stadials. The amplitudes of these salinity variations are significantly larger on the Pacific side of the Panama isthmus, as inferred from a comparison of our data with a palaeoclimate record from the Caribbean basin. We conclude that millennial-scale fluctuations of moisture transport constitute an important feedback mechanism for abrupt climate changes, modulating the North Atlantic freshwater budget and hence North Atlantic Deep Water formation. [länk]

februari 28, 2007

Atlantens orkaner går sin egen väg

Filed under: Atmosfären,Havet,Klimatdata,Rekonstruktioner — by Daniel @ 20:09

I höstas skrev jag ett litet referat om en nyhetsartikel i Science, vilken behandlade ett seminarie om orkaner. Där pekades att det är ganska mycket en tolkningsfråga i datamängderna hur orkantrenderna ser ut; blir de fler, blir de starkare och så vidare. En av deltagarna i det seminariet, James Kossin, har idag publicerat en artikel om detta i Geophysical Research Letters. Kossin med medförfattare hade en hypotes om att orkandata från olika delar av världen behandlats olika och inte var konsistena med varandra, inte ens när satellitobservationer infördes under 1970-talet. För att råda bot på detta tog de satellitobservationer mellan juli 1983 och december 2005 (allt i allt cirka 169 000 observationer av 2 000 tropiska stormar) och använde samma efterbehandlingsmetod för att få en så homogen serie som möjligt. Kalibreringen gjordes mot Atlanten, men stämde ändå mycket väl överens med de andra havsbassängerna i världen.

Teorin man har är att den potentiella intensiteten hos en orkan ökar med ytvattentemperaturen. Det betyder inte att ytvattentemperaturen i sig bestämmer orkanens intensitet, bara att den potentiellt kan få högre intensitet. Rent statistiskt skulle det betyda att ju längre tiden går kan orkanintensiteterna i medeltal komma att öka, förutsatt att ytvattentemperaturen ökar (däremot är den enskilde orkanens intensitet sämre korrelerad mot ytvattentemperaturen). Det är också detta som vart den stora frågan allt sedan orkaner seglade upp på bordet som en major impact factor, framförallt direkt efter den intensiva orkansäsongen 2005.

Så vad fann författarna i sin nykalibrerade orkanintensitetserie? Vad man hittills observerat för Atlanten, det vill säga fler stora stormar (kategori 4 och 5) med högre intensitet, verkar stämma utan några större krusiduller. Det är heller inte ett särskilt överraskande resultat eftersom betydligt mycket mer arbetskraft investerats på tropiska stormar i Atlanten genom åren. Därför kan man förvänta sig att den serien var mer homogen rakt igenom från början. Även för östra Stilla Havet fann man god överensstämmande med tidigare data, men där är trenden istället negativ i antal stormar och intensitet. De övriga bassängerna med tropiska stormar (nordvästra Still Havet, södra Stilla Havet, norra och södra Indiska Oceanen) stämde tidigare data och de nyanalyserade data inte lika bra överens. Inte i någon av dessa bassänger visade det nya datasetet på en signifikant trend. Dessutom är det lite problem i vissa områden med datatillgänglighet. Exempelvis var data för södra Indiska Oceanen ganska sparsamt innan 1998 då en ny satellit, som täckte in området bättre, sändes upp.

Slutsatserna blir således att Kossin och medförfattare endast kunde finna en statistiskt signifikant trend av orkanintensiteten i Atlanten över de senaste 23 åren. Men, som de skriver, Atlantens orkaner utgör endast 15% av världens alla tropiska stormar och det är därför öppet att diskutera om ytvattentemperaturen verkligen har såpass stor inverkan på orkaners intensitet som man skulle kunna tro. Eftersom ytvattentemperaturerna ökat i alla bassänger på likvärdigt sätt under tidsperioden bör liknande trender kunna uppvisas överallt om nu temperaturen skulle vara den starkaste faktorn för tropiska stormars intensitet. Samvarierar inte världens tropiska oceaner med hjälp av samma variabel (i detta fall ytvattentempertur) bör det rimligtvis finnas andra mekanismer som styr. Frågan kommer fortsatt att diskuteras ganska flitigt med andra ord.

februari 14, 2007

Tack Tambora för Frankensteins monster!

Filed under: Historia,Klimatdata,Rekonstruktioner,Samhälle,Temperaturer — by Daniel @ 22:35

Hur hade världen sett ut om inte boken Frankenstein eller den moderne Prometheus funnits? Förmodligen hade den vart lite tristare och många hade gått miste om den där kittlande skräckslagna känslan, som lätt kan infinna sig när man läser boken. Om man är lite djärv kan man påstå att boken skrevs på grund av dåligt väder under den kalla sommaren 1816 tack vare ett vulkanutbrott året innan. Jag säger inte att det är så, för det kan vi inte bevisa, men det var kanske en av anledningarna till att Mary Shelly skrev boken, som hon fick idén till under en semester sommaren 1816. För knappt ett år sedan skrev jag ett litet inlägg om bakgrunden till året utan sommar, eller artonhundra-frys-ihjäl som vissa känner året vid. Tambora i Indonesien fick utbrott och slungade upp stora mängder stoft i atmosfären, vilket kylde ner jorden ganska rejält det kommande året/åren (de långtgående effekterna av ett vulkanutbrott sträcker sig över knappt en dekad, även om största skillnaden infinner sig relativt omgående efter utbrottet). Detta år är ett fascinerande år, men tyvärr finns inte dundermycket nedskrivet om det, vilket lämnar rum för en del utsvängningar. Jag har grubblat ett tag på hur den geografiska utbredningen av denna kalla sommar såg ut, speciellt i Europa. Var det så att temperaturen föll överallt eller fanns det ett geografiskt mönster? Det tänkte jag skissa grovt på nu. Men först låt oss ta en titt på lite äldre litteratur kring detta.

En forskare, som skrivit många intressanta klimthistoriska artiklar, har skrivit den artikel som kom att ligga till grund för min grubblan. För 17 år sedan publicerade J. Neumann i Climatic Change en artikel om 1810-talet i Östersjöregionen, i vilken han lägger tyngdpunkten på året 1816. Han jämförde uppmätt lufttemperatur, dödlighet och tillgång på spannmål som mått på hur stor impact Tamboras utbrott hade på Östersjöregionens befolkning. Vad gäller lufttemperatur verkar han inte se tendenser till att sommaren 1816 var ovanligt kall i regionen. Serier från Trondheim, Göteborg, Köpenhamn, Uppsala, Stockholm, Vöyri och St Petersburg användes för ändamålet. Ser man kortsiktligt (jämförelse av lufttemperaturen 1816 kontra 1814) var 1816 kallare, men år 1812 var till och mer ännu kallare än 1816 i Östersjöregionen under de varma månaderna (april till september).

Men, även om temperaturen inte verkade vara helt galen det året så kanske dödligheten eller tillgången på spannmål var sämre? Han fann att spannmålstillgången inte var utanför rimliga intervall. Det var till och med så att överskottet av importerat spannmål jämfört med vad som gick på export var en femtedel av det som var under 1813, det vill säga året efter missväxtåret 1812. Det indikerar att växtsäsongen (vår och sommar) 1812 var kall och ofruktsam medan växtsäsongen 1816 inte var särskilt påverkad av kyla. Neumann noterar till och med att medeltemperaturen i april, maj och juli var 6,6 grader Celcius år 1812, medan den år 1816 var 9,1 grader och året efter hela 10,2 grader Celcius. Det är nästan 5, 2 respektive 1 grad kallare än medeltemperaturen samma månader perioden 1990-2006.

Dödligheten då, var den annorlunda dessa år? Från Neumanns artikel kan man enkelt plotta upp de siffror han återger (se bild här), vilket visar att 1812 var dödlighetstoppar i Sverige och Danmark (året efter i Norge). Det kalla året 1816 var däremot ett minimum (!) vad gäller dödlighet i Sverige. På det hela sett verkar inte landet ha blivit särskilt påverkat av Tamboras utbrott, åtminstine inte i temperatur, spannmålstillgång eller dödlighet.

Efter att ha letat igenom ett antal artikel kan jag dessvärre inte finna en förklaring över vilka områden av Europa som blev påverkade i form av en kylig sommar 1816 av Tambotas utbrott året innan. Endast i generella ordalag går att läsa att Västeuropa var drabbat av en ovanligt kall sommar, medan de Östersjöangränsande länderna däremot var så gott som opåverkade. Kanske nöjer sig de flesta med det, men inte jag. På eget bevåg har jag därför gjort en mycket snabb, enkel och grov genomgång av sommartemperaturen år 1816 runt i Nordeuropa. Jag spanade in 5 stationer lite nämre, spridda generellt över Nordeuropa, och där mätningar för hela året 1816 fanns med. Stationerna utgjordes av Bergen i Norge, Köpenhamn i Danmark, Stockholm i Sverige, Vilnius i Litauen och Archangelsk i Ryssland. Basperioden, det vill säga mot vad jag räknade avvikelser från normalen, satte jag till åren 1900-1999 för alla serier som inkluderade dessa årtal. Vissa serier saknar något enstaka värde i denna period, varför det året ej är med.

Så hur avviker nu sommaren 1816 från normalen? Ser vi till de fem stationerna står det att se att Köpenhamn, Bergen och Archangelsk har medeltemperaturer under det normala, medan Vilnius och Stockholm har en normal sommar respektive varmare än normal sommar. Bergens serie börjar 1816 och det året är också det kallaste fram till 1830, men är ändå inte en ovanlig avvikelse från normalen därefter. Inte heller för Archangelsk eller Köpenhamn är den negativa avvikelsen från normalen något ovanligt. Däremot går det inte att utesluta helt att Tambora kan ha spelat en mindre roll i temperaturavvikelsen i Köpenhamn och Bergen. Deras anomali är negativ och vad som bidrar till det är svårt att veta – aska i atmosfären kan vara en delförklaring. Oavsett verkar det ändå sant att Östersjöregionen och Rysslands ishavskust inte var särskilt påverkad av vulkanutbrottet. Detta beror förmodligen på att askan inte nådde in i regionen då den borde ha tvättats ur atmosfären på vägen.

MEN, i övriga Europa, bortsett från Östeuropa, var det andra bullar som gällde. Jag plottade upp avvikelsen för sommaren 1816 från en mycket välkänd och vitt använd griddad temperaturrekonstruktion (upplösning 0,5 x 0,5 grader) för Europa. Det syns tydligt i bilden att Västeuropa blev hårt påverkat, i negativ anomaliavvikelse, den sommaren. I nästan hela Frankrike indikerar rekonstruktionen på en avvikelse på -3 grader Celcius för sommaren jämfört med perioden 1900-1999. Då skall man komma ihåg att sommartemperaturerna då var ungefär likadana som nu, varför detta är en ganska stor skillnad (en viss frekvensändring kan ha inträffat – men det är fortfarande under utredning). Lite motsägelsefullt kanske det är för Skandinavien, speciellt Stockholm, som enligt sin egen temperaturserie hade lite varmare än normalt sommaren 1816 medan rekonstruktionen visar på en negativ anomali (anomalierna är beräknade på samma basperiod; 1900-1999). Förmodligen beror skillnaden på griddningsmetoden som använts och att mätvärden som använts vid rekonstruktionen smetats ut. Trots det står bilden tydligt att sommaren var ovanligt kall i Västeuropa, medan den inte var särskilt ovanlig i Östersjöregionen. För informationens skull skall jag tillägga att inga andra år mellan 1806 till 1826 ens kommer i närheten till samma negativa anomali i Europa varför händelsen ändå kan klassas som ganska extrem (men kanske inte som unik). Däremot var sommaren 1819 ovanligt varm i Östersjöregionen, men det är en helt annan saga.

Min lilla genomgång är bara toppen på ett isberg. Det finns så mycket mer information att ta reda på gällandes detta år. Och det finns många liknande händelser som väntar på att bli kartlagda. Kanske blir de det så småningom. Eller vad sägs om den liknande händelse som skedde 1783 då Laki på Island fick utbrott, dödade en fjärdedel av Islands invånare i följderna och gav missväxt i Nildalen…

Nästa sida »

Skapa en gratis webbplats eller blogg på WordPress.com.